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ABSTRACT
Label Smoothing is a widely used technique in many areas. It can
prevent the network from being over-confident. However, it hy-
potheses that the prior distribution of all classes is uniform. Here,
we decide to abandon this hypothesis and propose a new smooth-
ing method, called Smoothing with Fake Label. It shares a part of
the prediction probability to a new fake class. Our experiment re-
sults show that the method can increase the performance of the
models on most tasks and outperform the Label Smoothing on text
classification and cross-lingual transfer tasks.

CCS CONCEPTS
• Computing methodologies → Regularization; Natural lan-
guage processing; Neural networks.
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1 INTRODUCTION
Text classification [5, 10, 12, 21] is a widely studied task in natural
language processing and has wide applications. For example, given
a movie review, judge whether its attitude is positive or negative.
Given a Twitter, judge whether it is a rumor. In recent years, we
usually use the deep neural networks to achieve such goal, includ-
ing the convolution neural networks [11], the recurrent neural
networks [2, 8] and the Transformer [23]. To train these models,
we usually use a large amount of training data and hope that they
can generalize well on the test data.
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The previous work [22] shows that a neural network is overfit-
ting when it places all probability on a single class in the training
set, which will hurt models’ generalization ability. To alleviate this
problem, they introduce a simple smoothing method, called La-
bel Smoothing. It shares a part of the true label’s probability to all
classes. People use it widely to improve the performance of neural
models across different tasks, including machine translation [23]
and image recognition [20, 29]. However, this method relies on a
hypothesis that the prior distribution of all classes is uniform. This
may not be satisfied by all classification tasks. Therefore, one can
find that in text classification or some multilingual tasks, people
seldom use this method.

To fill this gap, we decide to abandon this hypothesis and not to
share the probability to all classes, but only a new fake class. We
call this smoothing method as Smoothing with Fake Label (FLS). We
use multiple NLP tasks to prove the effectiveness of our smoothing
method, including semantics analysis, natural language inference,
sentence meaning similarity and machine translation. Our exper-
iment results show that it can increase our models’ performance
across a wide range of tasks.

2 SMOOTHINGWITH FAKE LABEL
2.1 Motivation
We first give a brief introduction of the Label Smoothing. [22] first
introduces this method in their work, which shares a part of proba-
bility to all classes. Suppose that we have a K-class classification
task, a training sample can be denoted as (𝑥 (𝑛), 𝑦(𝑛)) for 𝑛 = 1, ..., 𝑁
and 𝑦(𝑛) ∈ {1, 2, ..., 𝐾}. 𝜃 is the parameter of a model. Their method
is described as follows:

L(𝜃 ) = −
𝑁∑
𝑛=1

𝐾∑
𝑘=1

1(𝑦(𝑛) = 𝑘) log 𝑃 (𝑘 |𝑥 (𝑛))

− 𝜆
𝑁∑
𝑛=1

1
𝐾

𝐾∑
𝑘=1

log 𝑃 (𝑘 |𝑥 (𝑛)).
(1)

The first term is the cross-entropy loss and the second term is the
smoothing term. This method relies on a hypothesis that the prior
distribution of all classes is uniform, 1

𝐾
, which cannot be satisfied

by all tasks. In order to alleviate this problem, we remove such prior
and propose our method in the following section.

2.2 Our Method
In this part, we illustrate our smoothing method and call it as
Smoothing with Fake Label (FLS). We manually create a new fake
label 𝐾 + 1 for the K-class classification task. The loss function
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becomes:

L(𝜃 ) = −
𝑁∑
𝑛=1

𝐾∑
𝑘=1

1(𝑦(𝑛) = 𝑘) log 𝑃 (𝑘 |𝑥 (𝑛))

− 𝜆
𝑁∑
𝑛=1

log 𝑃 (𝐾 + 1|𝑥 (𝑛)),
(2)

where 𝜆 controls the amount of probability on the fake label. The
first term is also the cross-entropy loss. For the second term, we
require our models to share some probabilities on the fake label
for every sample. Our method can avoid the prior assumption of
uniform distribution and also play a smoothing role.

3 EXPERIMENTS SETUPS
To examine the effectiveness of our method, we train different
models with our method on different tasks.

3.1 Tasks
We first employ different text classification tasks of GLUE [24] to
evaluate our method.

• Sentiment analysis task
– SST-2: the Stanford Sentiment Treebank [21]

• Natural language inference tasks
– QNLI: Question-answering NLI based on the Stanford
Question Answering Dataset [19]

– MNLI: the Multi-Genre Natural Language Inference Cor-
pus [25]

• Sentence meaning similarity tasks
– RTE: the Recognizing Textual Entailment datasets1
– QQP: the Quora Question Pairs dataset2
– MRPC: the Microsoft Research Paraphrase Corpus [6]

We report the scores on the validation, rather than test data, so the
results are different from the original Roberta paper [13].

We also include a cross-lingual task, XNLI [4] to evaluate how our
method affects the cross-lingual transfer ability of the model. This
task is a multilingual versionMNLI task. Its test set is translated into
15 different languages. We train our models with English training
data and evaluate them with 15 different languages’ test data.

Apart from this, we also evaluate our method on machine trans-
lation task with IWSLT2014 German-English parallel dataset [1].
Since Label Smoothing is widely used in machine translation [7, 23],
we also want to analyze whether our method is useful in this area.

3.2 Models
For the English text classification tasks and the cross-lingual task,
our models are two state-of-the-art pre-trained language models,
RoBERTa [13] and XLM-R [3]. We choose to use the based version
models, which contain 12 layers Transformer Encoder block, 768
hidden size and 12 attention heads. For the machine translation
task, we use the Transformer Encoder-Decoder Seq2seq structure.
Both the Encoder and Decoder have 6 layers, 512 hidden size and 4
attention heads.

Since training such models requires a large amount of com-
putational resources, it is difficult (and environmentally costly)
1https://aclweb.org/aclwiki/Recognizing_Textual_Entailment
2https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

RoBERTa +LS Ours
RTE 78.38 78.36 78.52
SST-2 94.78 94.76 94.98
QNLI 92.74 92.78 92.78
MNLI 87.58 87.60 87.62
QQP 91.60 91.40 91.48
MRPC 87.44 87.36 87.64
Avg. 88.75 88.71 88.84

Table 1: Accuracy results for English tasks. All results are
averaged over five different seeds. Bold indicates the best re-
sult of every task. (LS = Label Smoothing)

for individual researchers to do so independently. Luckily, one
can download these pre-trained models from various community
resources. FairSeq [18] and Huggingface Transformers [26] are
two well-known package for pre-trained language models. We
download the RoBERTa-base model from FairSeq3 and XLM-R-
base model from Huggingface.4 Then we fine-tune these models
with our scripts.

3.3 𝜆 Design
The value of 𝜆 is important for our method. For the text classifica-
tion, if 𝜆 is too large, models can only learn to predict the fake class.
We carefully design the 𝜆 value for each text classification task. We
find that 𝜆 being smaller than 1

𝐾+1 is fine for a K-class classification
problem. All 𝜆 values are in Section 8. For machine translation, we
surprisingly find that 𝜆 can be larger. We test ten different values
in our experiments from 0.1 to 1.0. For Label Smoothing, 𝜆 is set to
0.1 for all tasks.

3.4 Training Details
We fine-tune the RoBERTa-base model and training the machine
translationmodels with Fairseq.We directly use the hyper-parameters
which are recommended by Fairseq5. To avoid overstating, we av-
erage all results with five different random seeds (1,2,3,4 and 5) for
the English text classification tasks.

For the cross-lingual task, we fine-tune XLM-R-base model with
Huggingface Transformers. We use a batch size of 8 and train for 3
epochs, optimized byAdamW [14]. Themax length of each sentence
is 128. If the length of a sentence exceeds 128, we clip this sentence.

4 RESULTS AND ANALYSIS
EnglishTextClassificationTasks Table 1 shows that RoBERTa-
base cannot benefit from Label Smoothing, which corroborates our
claims in the introduction that people seldom use it in text classifi-
cation tasks. Its uniform distribution hypothesis prior is not suitable
for most tasks. After removing this prior, our method improves the
model’s performance on most tasks, which reveals the effectiveness
of our method.

3http://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
4https://huggingface.co/xlm-roberta-base
5https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.
md
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Models en fr es bg zh de ru ar th sw el tr vi hi ur Avg.
Fine-tuning Models on English Training Set
XLM-R 83.9 77.5 77.9 76.8 72.9 76.1 74.7 71.2 71.8 64.3 75.4 72.5 73.3 68.6 66.1 73.5
+LS 84.4 77.5 77.9 77.0 72.9 75.7 74.9 71.3 70.3 62.8 75.0 72.3 73.6 69.2 65.3 73.3
Ours 84.9 79.0 79.3 78.1 74.7 77.3 76.8 72.4 72.7 64.7 76.2 73.0 75.8 71.0 66.0 74.8
Table 2: Accuracy results for XNLI task. Bold indicates the best result of every language. (LS = Label Smoothing)

De-En En-De
Valid Test Valid Test

Transformer 34.37 33.52 29.18 27.41
+LS 35.53 34.67 30.00 28.48
Ours (𝜆 = 0.5) 35.03 34.32 29.61 28.37
Ours (𝜆 = 0.6) 35.25 34.31 29.75 28.31
Ours (𝜆 = 0.7) 35.06 34.14 29.76 28.46

Table 3: BLEU results for machine translation task. Bold in-
dicates the best two results. (LS = Label Smoothing)

Cross-lingual Transfer Task Table 2 illustrates that ourmethod
outperforms Label Smoothing on every language. Some languages’
results increase more than 1%. For example, the Thai(th) score of
Label Smoothing is 70.3, which is 2.4 lower than our method. Al-
though Label Smoothing can increase the accuracy score of English,
it harms the model’s cross-lingual transfer ability. Model’s perfor-
mance on some languages is degenerated, like German(de), Thai(th)
and Swedish(sw). This indicates that the uniform distribution prior
of Label Smoothing is not suitable for the cross-lingual transfer
learning scenario.

Comparing our method with the raw model’s results, we can
find that removing the uniform distribution prior, the performance
of XLM-R on all languages except ur increases. This indicates that
our method can improve the model’s cross-lingual transfer ability.

Machine Translation This task is distinguishable from the pre-
vious tasks. We consider it as a classification task with thousands
of classes. We add a fake token into the vocabulary during training
our models. When we are translating a new sentence or calculating
the perplexity, we manually set the logit of the fake label to be −∞.
This ensures that the fake token will not appear in the translation
results and affect the perplexity.

Table 3 illustrates that models with Label Smoothing have the
highest BLEU scores on German-English translation validation and
test sets. The BLEU scores increase more than one point. This cor-
roborates the previous research’s results [23] that Label Smoothing
can improve model’s performance on machine translation. Though
our method lag behind Label Smoothing, it still outperforms the
original models, which proves the effectiveness of our method. For
example, when 𝜆 = 0.6, the BLEU score of De-En validation set
increases about 0.9 and only 0.28 point lower than Label Smoothing.
From Figure 1, we surprisingly find that increasing the value of
𝜆 will not degenerate the model’s performance, which indicates
that the machine translation tasks are quite different from the text
classification.

Figure 1: Validation BLEU results for De-En and En-De val-
idation sets. The 𝜆 value of Label Smoothing is fixed to 0.1.
(FLS = Smoothing with Fake Label, LS = Label Smoothing)

We also analyze how these smoothing methods affect the per-
plexity. Figure 2 illustrates that the larger 𝜆 of our method leads to
lower perplexity. When 𝜆 = 1.0, it has the lowest PPL on the De-En
validation set, which is lower than Label Smoothing. All PPL scores
of the two smoothing methods are lower than the original model
by a large margin. These results reveal that the smoothing method
can reduce the PPL, which is different from previous work [23].

5 DISCUSSION
The analyses and experiments in this work point out that the uni-
form distribution prior hypothesis Label Smoothing is not suitable
for all tasks, especially for the cross-lingual transfer learning. Our
work abandon this prior and smooth with a fake label, which out-
perform Label Smoothing on some tasks. However, we still can find
that it is less useful in machine translation than LS, which indicates
that some tasks can benefit from the inductive bias of the uniform



Figure 2: PPL results for De-En and En-De validation sets.
The 𝜆 value of Label Smoothing is fixed to 0.1. (FLS = Fake
Label Smoothing, LS = Label Smoothing)

distribution prior. It is worthy to analyze how to adjust the prior
distribution for different tasks in the future works.

In our machine translation tasks, we also surprisingly find that
Label Smoothing and our method do not make the perplexity worse.
Since in most of the previous works [7, 23], they find that LS will
increase the perplexity. Though we do not attempt to dispute these
claims with our findings, we do hope our experiments will figure
out the role of different smoothing methods.

6 RELATEDWORK
Label Smoothing is first proposed by Szegedy et al. [22] and widely
used in computer vision area. Much works focus on understanding
this method [15–17, 27, 28]. We find that the uniform distribution
prior is not suitable for all tasks and propose a new smoothing
method.

Most similar to our work, [9] uses the Pseudo-Labels in the image
classification task. For un-labeled data, they just pick up the class
which has the maximum predicted probability and use it as the true
labels. However, our method does not need the un-labeled data.

7 CONCLUSION
In this work, we propose a new label smoothing method, called
Smoothing with Fake Label, which outperforms Label Smoothing
on text classification and cross-lingual transfer tasks. For machine

Tasks 𝜆 Value
RTE 0.30
SST-2 0.26
QNLI 0.26
MNLI 0.10
QQP 0.22
MRPC 0.12
XNLI 0.25

Table 4: Different 𝜆 values for different tasks.

translation tasks, using our method is comparable to Label Smooth-
ing.

Our experiment results show that both our method and Label
Smoothing promote the performance poorly on the GLUE bench-
mark while promote the performance with a relatively remarkable
margin on the Machine Translation. Future works will explore
when label smoothing can bring in improvement for a task. In addi-
tion, we will explore how to adaptively adjust the prior distribution
for a specific task.

8 APPENDIX
Table 4 shows the values of 𝜆 for different tasks.
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